- Подробности
- Опубликовано: 02.08.2013 16:10
Осторожно, ниже квантовая механика!
СКП (или SQL, Standard Quantum Limit) - это понятие из квантовой механики. Так называют ограничение в точности измерений, которые проводятся многократно или длительно. Хорошим примером, к тому же подходящим к нашему случаю, является измерение расстояния до некоторой массы с максимально возможной точностью. Для измерения используется луч лазера. Зная длину волны лазера, начальную фазу волны и замерив фазу возвращенного луча, мы можем вычислить точное пройденное им расстояние. К сожалению, давление луча на тело вызовет в нем возмущения на квантовом уровне (квантовые дробовые флуктуации). Чем точнее требуется измерить координату, тем мощнее нужен лазерный луч, и тем больше будут эти самые флуктуации. Такой квантовый шум и создает погрешность измерения.
Фактически СКП является следствием фундаментального запрета квантовой физики - принципа неопределенности Гейзенберга. Принцип неопределенности гласит, что при одновременном измерении двух величин произведение погрешностей не может быть меньше определенной константы. Грубо говоря, чем точнее мы измерим скорость квантовой частицы, тем менее точно можем определить ее положение. И наоборот. Важно отметить, что ограничения на точность измерений, накладываемые СКП, суровее ограничений принципа неопределенности Гейзенберга. Обойти последние в принципе невозможно без разрушения основ всей квантовой механики.
Способ обойти ограничение стандартного квантового предела предложили в американском детекторе гравитационных волн LIGO. Поиск гравитационных волн является одной из важнейших задач современной физики, однако пока что зарегистрировать их не удается из-за слишком низкой чувствительности существующей аппаратуры. Установка LIGO устроена очень просто. Она состоит из двух тоннелей с вакуумом, сходящихся под прямым углом. По трубам проходят лазерные лучи, а в их дальних их концах установлены зеркала (см. рис.). Именно расстояние до этих зеркал и измеряется лазером, как было описано выше. Особое значение имеет пересечение возвращающихся от зеркал лазерных лучей. Между ними возникает интерференция. За счет этого явления лучи либо усиливают, либо ослабляют друг друга. Величина интерференции зависит от фазы лучей, а значит и от пройденного лучами пути. Теоретически такой прибор должен зафиксировать изменение расстояний между зеркалами при проходе через установку гравитационной волны, но на практике точность интерферометра пока что слишком мала.
Для обхода СКП еще около четверти века назад было предложено использовать так называемые сжатые состояния света. Их получили в 1985 году, однако реализовать идею на практике удалось лишь недавно. Большинство источников света, включая лазеры, такое излучение создать не способны, однако при помощи специальных кристаллов физики научились получать свет в сжатом состоянии. Луч лазера, проходящий через такой кристалл, подвергается спонтанному параметрическому рассеянию. Другими словами, некоторые фотоны превращаются из одного кванта в пару запутанных частиц.
Ученые продемонстрировали, что использование квантово коррелированных фотонов позволяет уменьшить ошибку измерений до величины, которая меньше стандартного квантового предела. К сожалению, без специальных знаний очень сложно понять (и, тем более, объяснить), как именно это происходит, но поведение запутанных фотонов как раз снижает тот самый квантовый дробовый шум, о котором говорилось вначале.
Исследователи подчеркивают, что внесенные ими изменения существенно подняли чувствительность детектора гравитационных волн в частотном диапазоне от 50 до 300 герц, который особенно интересен астрофизикам. Именно в этом диапазоне должны, согласно теории, излучаться волны при слиянии массивных объектов: нейтронных звезд или черных дыр.
- Подробности
- Опубликовано: 17.03.2013 12:17
Давайте сегодня, в Международный день планетариев, честно признаем, что Московский планетарий - уг.
Я с теплом вспоминаю маленький и примитивный планетарий моих школьных времен. Он работал с 12 часов и до ночи, билет туда стоил сущие копейки, а в зале почти не было людей. В него я, не будучи в детстве любителем космоса, заходил просто отдохнуть и послушать одну из многочисленных лекций по астрономии. Для этого ведь и появились планетарии в XX веке - чтобы жители больших городов могли просто посмотреть на звезды, которые не видны в мегаполисах из-за ночного освещения. Планетарий - возможность отвлечься от суеты и узнать немного о нашей Вселенной.
Планетарии в современном мире, вообще, не очень популярные заведения. Например, лондонский планетарий закрылся несколько лет назад, а купольный проектор для любителей астрономии англичане установили в Гринвической обсерватории (переживать за лондонцев, впрочем, не надо: у них остался прекрасный отдел космоса в Музее техники, а до Гринвича - рукой подать). Наверное, лондонский планетарий был чудесным местом, тихим и уютным. Такие же эмоции, судя по отзывам, вызывает венский планетарий.
В Московском планетарии нельзя приходить регулярно: там всего одна-две примитивные лекции и небольшой набор полнокупольных фильмов, который почти не меняется с момента открытия планетария после реконструкции. Я лишь кратко упомяну о цене билета. Она в пять раз выше, чем, скажем, в Гонконгском планетарии (напомнить, насколько уровень жизни и доходы населения там выше, чем в Москве?). За такую сумму даже человек с доходами выше среднего не станет заходить в планетарий по вечерам отдохнуть. Впрочем, по каким вечерам? Последний сеанс - в 20 часов, и через 45 минут будь добр покинуть зал и ехать домой. Хотел отдохнуть? Эти 45 минут и время до сеанса будут наполнены не мыслями о космосе, а толкотней и визгом маленьких детей, которые вообще плохо понимают, где находятся. Ах да, к планетарию прилагается космическое кафе с космическими ценами и магазин детских игрушек, ведь на родителях и их мелких чадах зарабатывать выгоднее, чем на тех, кто интересуется астрономией.
Собственно, планетарий в Москве - это не планетарий. Это торгово-развлекательный центр, оформленный в космическом стиле. Увы, у нас сейчас умеют строить только торгово-развлекательные центры.
Источник: https://vk.com/wall-36969581_759
|
- Подробности
- Опубликовано: 13.11.2012 13:18
Под суперсимметрией подразумевают связь между фермионами (частицами, образующими материю) и бозонами (переносчиками взаимодействия), см рис. 2. Образно говоря, преобразование суперсимметрии может переводить вещество во взаимодействие или наоборот. Стандартная модель, основная современная физическая модель, не является суперсимметричной теорией, но может быть расширена до таковой. Для этого частицам СМ (и фермионам, и бозонам) придется добавить суперсимметричные пары частиц, а доказательством правдивости таких теорий может стать обнаружение предсказанных пар. На суперсимметрии основаны, например, теории суперструн.
Вернемся к эксперименту в БАКе. Ученые наблюдали странные B-мезоны (B_s-мезоны), т. е. адроны, состоящие из двух кварков - прелестного и странного, см. рис. 3. Это очень неустойчивые частицы. Они образуются при столкновении протонов (этим и занимаются в БАКе), но быстро распадаются на другие частицы, причем в редких случаях они распадаются на два мюона (рис. 1, 3). Стандартная модель даже предсказывает частоту такого исхода - три случая на один миллиард распадов. Несовпадение экспериментальных данных с предсказанной частотой распада на мюоны стало бы свидетельством в пользу того, что СМ не учитывает часть распадов, а значит, время от времени странные B-мезоны распадаются на пока еще неизвестные нам (но предсказанные в суперсимметричных териях) частицы.
Увы, экспериментальная частота распада на мюоны (еще раз уточню, что результаты пока предварительные) хорошо согласуется с предсказанной - 3,2 раза на 1 млрд распадов. Это чувствительный удар по суперсимметричным теориям. Как сказал представитель БАКа, полученные результаты хоть и не опровергают суперсимметрию, но серьезно ее ограничивает.